

Numix Meeting

Using MIPP

Leo Aliaga Mike Kordosky

College of William and Mary Ago 22, 2014

Introduction

Using MIPP:

- to study the Hadron Production (HP) comparing with the thin target data and see the effect on the flux.
- to combine in a comprehensive strategy with thin target data, low nu, beam fit and Nu-e.

Today, I am going to show some results from the first bullet.

Thin Target HP Reweighting

- Cascades leading to v are tabulated at generation. Save kinematics & material.
- In analysis, interactions reweighted as $\sigma(\text{data})/\sigma(\text{MC})$.
- Includes correction for beam attenuation in the target.

Datasets Used

NA49 pC @ 158 GeV
 (p_T dependence)

- π^{\pm} production for xF < 0.5 [Eur.Phys.J. C49 (2007) 897]
- K[±] production for xF < 0.2 [G. Tinti Ph.D. thesis]
- p production for xF<0.9 [Eur.Phys.J. C73 (2013) 2364]

 $-\pi^{\pm}$ production for xF < 0.5 [Phys.Rev. D27 (1983) 2580]

- Barton pC @ 100 GeV
 (0.3< p_⊤<0.5 GeV/c)
- MIPP pC @ 120 GeV
- K/π + NA49 extend kaon coverage to xF < 0.5

[Phys.Rev. D27 (1983) 2580]

- Weights applied for 12<p_{incident}<120 GeV/c, scaled by Fluka and checked by comparing to NA61 pC @ 31 GeV [Phys.Rev. C84 (2011)034604].
- Interactions on AI, Fe, He and Air are treated as if on C.

NuMI replica MIPP data

Yields of π⁺ and π⁻ in:

$$0.3 < p_Z < 80 \, GeV/c$$

 $0 < p_T < 2 \, GeV/c$

MIPP Binning

Low bin errors: between 5%-10%.

- Combines different detectors to maximize coverage.
- Data published (arXiv:1404.5882v1). A parametrized version was presented in Jon Paley's W&C (see backup slide).

Comparison of FTFP to MIPP Replica

 Y axis integrated p_T yield divided by p_Z bin size.

- $\frac{\Delta Y}{\Delta p_Z}$
- Data includes the error.
- Blue: parametrized yield (dY/dp₂).
- Red: g4numi prediction (FTFP_BERT).
- Just π^+ . (π^- in the backup slides).

Weights applied for π^{+}

From Parametrization

$$weight = \frac{Parametrized\ yield}{g4numi\ yield}$$

From Data

$$weight = \frac{Data \ yield}{g4numi \ yield}$$

Bin by bin, no interpolation yet

Comparison of FTFP vs MIPP Replica vs Thin Target Corrected Yields

Comparison of π^+ yields off the target

- Ratio over the FTFP prediction of pion production in the target.
- To use thin target data, we look into the ancestry of the hadron off the target in g4numi.

Comparison of π^{+} yields off the target

 The discrepancy is obvious around the focusing peak.

 We are applying few thin target correction for these pions.

Extending to High Energy Kaons

- MIPP data from Numi replica (Sharon's thesis):
 - Ratios: π̄/π⁺, K⁻/K⁺, K⁺/π⁺ and K⁻/π⁻ yields.
 - Only for high momentum particle produced:

We interpolate with a 2 degree polynomial (see backup).

To get the weight:

$$weight(K) = \frac{yield(\pi) \times ratio(K/\pi)}{MC(K)}$$

Comparison of K⁺ yields off the target

- Red and blue come from MIPP π^{+-} yield + Sharon's thesis.
- Black low energy comes from NA49 (Gemma's thesis) and black high energy from Lebedev + NA49 π.

Comparison of K⁺ yields off the target

 We are applying few thin target correction for these kaons.

Check with Sharon's Ratios

Corrected FTFP uses thin target data.

- (more in backup slides)
- Data is MIPP replica from Sharon's thesis.

PRELIMINARY RESULTS

LE010z185i and LE010z-185i Fluxes

Corrected Flux Over FTFP Prediction LE FHC

Corrected Flux Over FTFP Prediction LE FHC

needs additional investigation!

Looking into MIPP's Impact on the Flux

We look closely at four neutrino energy regions:

[3, 5] GeV/c [9, 11] GeV/c [13, 15] GeV/c

[20, 22] GeV/c

E_v in [3, 5] GeV/c

Higher Energies

Why are NA49 and MIPP so different, specially in low energy neutrinos?

Hypothesis: Caused by pion reinteractions in the target

Let's take a look...

- First: π^{\dagger} that exit the target.
- Second: π^{\dagger} in the neutrino history.
- Third: π^{\dagger} cross total section.

$0 < p_z < 2.5 \text{ GeV/c}$

$0 < p_z < 2.5 \text{ GeV/c}$

$4 < p_z < 20 \text{ GeV/c}$

4<p_z<20 GeV/c

20<p_z<80 GeV/c

20<p_z<80 GeV/c

Pion in the Neutrino Chain

- A large number of incident pi+ are in the few 10s of GeVs.
- Those particles are reinteracting to create lower energy pi+.
 What will the effect be of a wrong MC model?

Vary Pion Total Inelastic Cross Section

- We added a knob to geant4 total inelastic cross section (IXS) to see the see the effect on the flux. This allows the cross section to be adjusted without recompiling GEANT.
- As a first approach, we modify the π & proton IXS down and up by 20%.

- The proton effect is due to the focusing.
- Increasing π IXS means that more of them will re-interact in the target.

• The effect of the π IXS on the flux is currently under investigation.³³

A Preliminary Results of the Beam Fit

 In this particular fit, we are using a polynomial function for the weights f(xF,pT).

For Minerva:

$$E_{\nu} \approx 0.43 E_{\pi}$$

$$E_{\nu} \approx 0.43 E_{\pi} \approx 0.43 \times 120 \, GeV \times x_F$$

Comparison with MIPP

Comparing MIPP – thin HP pC @ 120 GeV

Current Efforts

- We have a comprehensive strategy that includes combining the correction from MIPP replica target yields, thin target production, and the attenuation and absorption of the particle beam.
- The next slides show the current status of that work.
 - We follow the following algorithm:
- Look to see if the event is able to be corrected by MIPP.
- Correct for attenuation of the primary particle.
- Look for HP correction just outside of the target (for no MIPP events)
 and the whole neutrino chain when we have no MIPP event.
- We apply the multi-universe technique to handle the uncertainties.

Current Efforts

Conclusions

- The first look at the MIPP data to Minerva flux shows a big effect in comparison to the thin target correction.
- We plan to use MIPP data rather than the MIPP parametrization.
- We are on our way to calculate the flux constrained by the all available HP experiments.

backup

MIPP

 Experiment located at Fermilab. **RICH** Detector **ToF** Detector Ckov Detector EM & 25 m Hadronic **TPC** Calorimeters Wire Chambers Rosie Target Magnet Beam **JGG** Ckov

 MIPP measured hadron production data set using different beams and targets (thick and thin).

Magnet

 MIPP covers a almost the entire kinematic phase space of the HP.

Parametrized Pion Yields

Jon Paley and Mark Messier parametrized the yield as:

$$\frac{d^{2}N}{dp_{T}dp_{Z}} = p_{inc}(A(x) + B(x)p_{T}) \exp(-C(x)p_{T}^{3/2})$$

$$A(x) = a_1 (1-x)^{a_2} (1+a_3 x) x^{-a_4}$$

$$B(x) = b_1 (1-x)^{b_2} (1+b_3 x) x^{-b_4}$$

$$C(x) = -c_1/x^{c_2} + c_3$$

$$C(x) = c_{SI}/\exp((x+c_{S2})c_{S3}) + c_{S4} x + c_{S5} \qquad x > 0.22$$

- $x = p_z / 120 \, GeV$
- They start the parametrization at $p_7 = 1$ GeV/c.

MIPP Data – Parametrization – g4numi comparison

MIPP Data – Parametrization – g4numi comparison

MIPP Data – Parametrization – g4numi comparison

K^+/π^+

K^{-}/π^{-}

K^{-}/π^{-}

- This is exactly zero.
- I cut in Pz>60 GeV/c.

Sharon's thesis ratios comparing with HP correction

Sharon's thesis ratios comparing with thin target HP correction

Corrected Flux Over FTFP Prediction LE RHC

Corrected Flux Over FTFP Prediction LE RHC

Weight applied from MIPP (no pion plus)

Relevant π^{+} yields for LE FHC

